

HierarchicalMap Pattern v2.5 Page 1 of 13

Hierarchical Map

Hideyuki Sekiguchi

hideyuki_sekiguchi@hotmail.com

Abstract. Traditional maps and lists support only one-dimensional

information and lack support for the representation of hierarchically

organized data. On the other hand, there are many cases where hierarchically

organized data makes the information clearer and easier to handle. This

pattern aims to define a data structure interface that can easily handle

hierarchically organized information. Thus, nodes containing information are

accessible by a simple path-like composite key.

1. Context

There are many situations, during software development, where it is necessary to deal

with a set of information. This set of information can be divided into subsets with

hierarchical relationships among them. Each subset has a label to facilitate

identification.

This pattern is for software developers who need to deal with a set of hierarchically

organized information.

2. Problem

How should the information be organized to represent which pieces are subsets and

which are supersets? How can a particular subset be manipulated without traversing

through all the subsets composing the information.

3. Forces

� Hierarchically organized information is easy for humans to understand. Deeply

nested hierarchies are hard to manipulate.

It is difficult for a human to process more than six pieces of information.

Organizing data in small pieces makes them friendlier for users and simplifies

their understanding. For the same reason, it is difficult for a programmer to deal

with more than a couple of nested iterators.

� Information accessed through a label is user friendly. Information accessed

through an index is more efficient for a machine.

It is easier for a human being to refer to information using a label because we

can choose a more meaningful name. On the other hand, machines spend less

effort retrieving information using a positional index.

� The same information should be able to be reorganized in a different hierarchy.

The same information should have a single label as its identity.

HierarchicalMap Pattern v2.5 Page 2 of 13

Sometimes, it is necessary to reorganize information in a different hierarchy

depending on the user. Although, understanding of the information becomes

easier when the same information has the same label.

4. Solution

Provide a simple data structure in which you can query the objects as in a hierarchical

file system. Define a single interface, called a HierarchicalMap for this data structure.

This data structure should map the object to a key and organize these keys hierarchically

as in the directory structure of a file system. Each directory, or node, corresponds to an

instance of a HierarchicalMap and the file, or leaf, represents the other objects. Here the

key, which corresponds to the name of directory or file, can be repeated, i.e. the key

would not be unique.

The interface should have the following methods:

� Querying operations: get(key) and getAll(key)

� Structure handling operations: put(key, value), add(key, value), addAll(key,

collection), remove(key) and removeAll(key)

� Collection operations: values(), keySet() and entrySet()

This data structure can be implemented using the LinkedHashMultiMap, which is based

on HashMap (Figure 1).

Figure 1. Data Structure for implementation of HashMap

LinkedHashMultiMap has extra pointers (Figure 2) to permit insertion-order iteration

through “before” and “after” pointers. Other pointers, “nextSibling” and

“previousSibling,” are used to keep more than one object with same key.

Figure 2. Several pointers are used to implement different types of HashMap

The sequence diagram in Figure 3 illustrates the interaction between HierarchicalMap

and LinkedHashMultiMap to implement get(key) operation. Note that there is a

Tokenizer class to parse the key parameter into tokens.

HierarchicalMap Pattern v2.5 Page 3 of 13

Figure 3. Sequence Diagram for get(key) operation

The nextToken() and get(key) operation over LinkedHashMultiMap should be repeated

while there is a valid token returned by Tokenizer class.

5. Resulting Context

Since each node of the HierarchicalMap may contain other HierarchicalMaps, a lot of

data can be manipulated in a single operation. It is simpler to transfer a lot of data

instead of creating a loop and then iterating over each data item, however, it also

increases the chance of accidentally moving data that is not necessary.

HierarchicalMap has the same problem of any map in which there is no indication of

allowed keys or required keys. A helper class should be used to avoid this situation. This

class could check the keys and associated data types against XSD (XML Schema

Definition) for instance, and also the IDE could check it during coding, and the compiler

could insert checking code at runtime.

//@schema customer customer.xsd

HierarchicalMap customer = new BasicHierarchicalMap();

The presence of recursive reference must be checked to avoid infinite-loop during

serialization of HierarchicalMap.

Table 1 summarizes the positive and negative consequences:

Positive Negative

Huge amounts of data can be moved in a

single operation

A lot of data can accidentally be moved in

a single operation

The information can be split to form a

smaller set

It is harder to figure out the big picture of

the entire information structure

The same node can be shared among

several HierarchicalMaps

The same HierarchicalMap can be

recursively referred to causing infinite loop

during serialization

Table 1. Positive and negative consequences of HierarchicalMap solution

HierarchicalMap Pattern v2.5 Page 4 of 13

6. Rationale

The HierarchicalMap could be implemented using the Composite pattern (Figure 4) to

hold the hierarchy of information and the Visitor pattern for iterating over it. This

solution is best for GUI applications, for instance, where graphic components are

grouped using the Composite pattern and the Visitor pattern can be used to change the

back ground color.

Figure 4. Class diagram for the data structure applying the Composite pattern

Sometimes the relationships among data composing the information can be very weak

or even unrelated. In other circumstances, the data is temporary without any common

operations. This is the case of configuration information used to setup applications

behavior like “TCP/IP socket port number” or “maximum log file size. For this type of

information, a simple data structure like HashMap or LinkedList is desirable.

The class in Figure 4 can hold all the desired data, but it is difficult to present the notion

of hierarchy. Indeed, there is no way to obtain the node that is not the direct child of the

current node. To reach a node that is several nodes deeper than the current node, we

have to navigate through the child lists.

A similar difficulty occurs when we have to add a node lower in the hierarchy (Figure

5). We have to descend through the hierarchy while the intermediate nodes exist and

append newly created nodes to reflect the desired hierarchy. After that we can finally

add the target node.

Figure 5. Appending a node lower in the hierarchy

HierarchicalMap Pattern v2.5 Page 5 of 13

7. Example

Many applications rely on configuration information stored apart from the application,

which can be altered to produce the desired behavior without modifying the application

itself. The increasing complexity of this configuration information, associated with the

variety of alternatives to store it, results in considerable effort to provide a highly

customizable application.

This configuration information can be stored in several formats such as the Windows

Registry, Environment Variables, Configuration File (e.g. .ini or xml files), Relational

Data Base, or even in a Directory Service.

Suppose an application provides a service with a network interface. The application

needs to be installed on many different sites. All sites are expected to run Win32

servers. Each site administrator can choose the port number in which the application

will run and the available protocols (TCP/UDP, HTTP/SOAP). There are other fine-

tuning settings such as: maximum buffer size, maximum number of threads, and thread

scheduling policy.

One way to deliver this application is to compile a version for each site needed to run

the service. Another way is to configure the application at runtime (when the system

starts). Applications under Win32 are usually configured by accessing the Registry,

Environment Variables or Config files (.ini or .xml). In many cases the information is

better represented in a hierarchy, where the ancestors of a node provide context to that

node (Figure 6).

Figure 6. information required by this sample application

Something like the following code can be written to retrieve the information from the

Unix like Environment Variable:

void getConfig(char **szPortNumber, char **szMaxBuff, char **szMaxThread)

{

 *szPortNumber = getenv("PORT");

 *szMaxBuff = getenv("MAXBUFF");

 *szMaxThread = getenv("MAXTHREAD");

}

HierarchicalMap Pattern v2.5 Page 6 of 13

For Win32 Registry (in C), it would be:

void getConfig(char *szPortNumber, char *szMaxBuff, char *szMaxThread)

{

 HKEY hKey;

 DWORD dwSize;

 RegOpenKeyEx(HKEY_LOCAL_MACHINE, "SOFTWARE\\ACME\\MY_APP",

 0, KEY_QUERY_VALUE, &hKey);

 RegQueryValueEx(hKey, "PORT", NULL, NULL,

 (unsigned char*)szPortNumber, &dwSize);

 RegQueryValueEx(hKey, "MAXBUFF", NULL, NULL,

 (unsigned char*) szMaxBuff, &dwSize);

 RegQueryValueEx(hKey, "MAXTHREAD", NULL, NULL,

 (unsigned char*) szMaxThread, &dwSize);

}

And for Directory Server supporting LDAP (in Java):

public void getConfig(DirContext ctx, String port, String maxBuff, String
maxThread) {

 try {

 Attributes attrs = ctx.getAttributes("cn=MY_APP, ou=ACME");

 port = attrs.get("Port").get().toString();

 maxBuff = attrs.get("MaxBuffer").get().toString();

 maxThread = attrs.get("MaxThread").get().toString();

 } catch (NamingException e) {

 System.err.println(e);

 }

}

Note that, although the information needed is exactly the same (Port Number, Maximum

Buffer Size and Maximum Concurrent Threads), the way to retrieve this information can

vary substantially.

Suppose that this configuration will be kept in a Directory Service to allow centralized

management of applications. But start storing the data in an XML file while the

“Corporate LDAP Server Project” has not yet finished inside the organization.

This means that writing an application bound to the particular configuration repository

is not a good idea. The application should not have to be concerned with the particular

retrieval method of the repository. Instead, this information should be converted into a

repository-neutral data structure so that the rest of the application only has to deal with

this single data structure. The HierarchicalMap could be used for this purpose.

HierarchicalMap Pattern v2.5 Page 7 of 13

8. Sample Code

The following data (Figure 7) will be used during this sample:

Figure 7. Information structure used during this example

Each circle or node represents an instance of HierarchicalMap and the rectangle or leaf

represents any other object. A node can map subsequent nodes (this is the case of

"Order" and "Address"), or can map leaves, e.g. java.lang.String, (this is the case of

“type”, "City", "State" and "Zip Code").

8.1 Creating the structure

The following code will create a data structure representing the data shown above:

//create a HierachicalMap containing first address

HierarchicalMap address1 = new BasicHierarchicalMap();

address1.put("type", "Billing");

address1.put("City", "Sta Clara");

address1.put("State", "CA");

address1.put("ZIP Code", "95054");

//add the address to newly created hmap

HierarchicalMap hmap = new BasicHierarchicalMap();

hmap.add("Order/Address", address1);

Continue to next page …

HierarchicalMap Pattern v2.5 Page 8 of 13

//create another HierachicalMap containing second address

HierarchicalMap address2 = new BasicHierarchicalMap();

address2.put("type", "Shipping");

address2.put("City", "São Paulo");

address2.put("State", "SP");

address2.put("ZIP Code", "04717-004");

//add the second address to hmap

hmap.add("Order/Address", address2);

The method “add” could also have another signature in which it receives only the “key”

and return an empty map appended under that “key”. Then, the second address can be

added using the following code:

//create another HierachicalMap containing second address

HierarchicalMap address2 = hmap.add("Order/Address");

address2.put("type", "Shipping");

address2.put("City", "São Paulo");

address2.put("State", "SP");

address2.put("ZIP Code", "04717-004");

8.2 Recovering the data

Once the structure is filled, you can query the data inside:

System.out.println(hmap.get("Order/Address/City"));

System.out.println(address2.get("State"));

The lines above will produce the following output:

Sta ClaraSta ClaraSta ClaraSta Clara

SPSPSPSP

Note that the get operation will recover a single data item, which we stipulated to be the

first data inserted. Even though there are two cities stored in the structure, the first one

(Sta Clara) was retrieved in the example above. On the other hand, the return for the

state was SP because we retrieved the first state from the address2 node. If you need to

obtain entire set of objects with same key you should use getAll instead:

//example using getAll wich returns a Collection of objects matching

//the key

java.util.Collection val = hmap.getAll("Order/Address/City");

//get the iterator to printout all the objects returned

java.util.Iterator itr = val.iterator();

while(itr.hasNext()) {

System.out.println(itr.next());

}

HierarchicalMap Pattern v2.5 Page 9 of 13

The code above will produce the following output:

Sta ClaraSta ClaraSta ClaraSta Clara

São PauloSão PauloSão PauloSão Paulo

8.3 Interacting with Collections

Iterating with the structure will give the most interesting result:

//first, get all the addresses

java.util.Collection addresses = hmap.getAll("Order/Address");

//for each address in addresses

java.util.Iterator adritr = addresses.iterator();

while(adritr.hasNext()) {

 System.out.println("Address");

 //get the first address wich is a HierarchicalMap

 HierarchicalMap address = (HierarchicalMap)adritr.next();

 //get the entrySet to iterate with its children, i.e. City, State

 //and ZIP code

 java.util.Set set = address.entrySet();

 java.util.Iterator itr = set.iterator();

 while(itr.hasNext()) {

 //printout the pair key value for each entry

 java.util.Map.Entry entry =

 (java.util.Map.Entry)itr.next();

 System.out.println(entry.getKey() + " : " +

 entry.getValue());

 }

 System.out.println();

}

This will produce the following output:

AddressAddressAddressAddress

type : Billingtype : Billingtype : Billingtype : Billing

City : Sta ClaraCity : Sta ClaraCity : Sta ClaraCity : Sta Clara

State : CAState : CAState : CAState : CA

ZIP code : 95054ZIP code : 95054ZIP code : 95054ZIP code : 95054

AddressAddressAddressAddress

type : Shippingtype : Shippingtype : Shippingtype : Shipping

City : São PauloCity : São PauloCity : São PauloCity : São Paulo

State : SPState : SPState : SPState : SP

ZIP code : 04717ZIP code : 04717ZIP code : 04717ZIP code : 04717----004004004004

HierarchicalMap Pattern v2.5 Page 10 of 13

8.4 Restructuring the Map

Although the structure in Figure 7 conforms to XSD recommendations, it is not

possible to take advantage of HierarchicalMap. Information organized in this way does

not allow direct access to inner data (e.g. to get shipping State). This direct access can

be achieved with a little restructuring of the HierarchicalMap. We can implement th

following method for example:

public static void denormalize(HierarchicalMap map,

 String field, String keyField) {

 //first, remove all fields and substitute with empty map

 Collection col = map.removeAll(field);

 HierarchicalMap newMap = map.add(field);

 //iterate through removed fields

 Iterator itr = col.iterator();

 while(itr.hasNext()) {

 //for each object removed check it if it is a node

 //(i.e. instance of HierarchicalMap)

 Object o = itr.next();

 if(o instanceof HierarchicalMap) {

 //if so, try to get the value of key field in which

 //the node, will be added

 Object key = ((HierarchicalMap)o).get(keyField);

 if(key != null) {

 newMap.add(key.toString(), o);

 }

 }

 }

}

HierarchicalMap Pattern v2.5 Page 11 of 13

With the above method, we can transform the original map to the following structure

(Figure 8):

Figure 8. Reorganized information structure to take advantage of
HierarchicalMap

Now, we can query the map as follows:

//call denormalize method defined earlier to reorganize the structure

//from Figure 7 to Figure 8

denormalize(map,"Order/Address","type");

//now fetch the desiered information directly

System.out.print("Shipping State: ");

System.out.println(map.get("Order/Address/Shipping/State"));

System.out.print("Billing State: ");

System.out.println(map.get("Order/Address/Billing/State"));

The result will be:

Shipping State: SPShipping State: SPShipping State: SPShipping State: SP

Billing State: CABilling State: CABilling State: CABilling State: CA

HierarchicalMap Pattern v2.5 Page 12 of 13

Now, we can write the following method to restructure the map back to the original

format:

public static void normalize(HierarchicalMap map,

 String field, String keyField) {

 //first, remove all fields

 Collection col = map.removeAll(field);

 Iterator itr = col.iterator();

 while(itr.hasNext()) {

 //for each object removed check it if it is a node

 //(i.e. instance of HierarchicalMap)

 Object o = itr.next();

 if(o instanceof HierarchicalMap) {

 //Then, add each sub-node under field, but setting

 //a new field containing the key in which the sub-node

 //was referred

 Iterator itr2 = ((HierarchicalMap)o).entrySet().iterator();

 while(itr2.hasNext()) {

 Entry e = (Entry)itr2.next();

 if(e.getValue() instanceof HierarchicalMap) {

 HierarchicalMap newMap =

 (HierarchicalMap)e.getValue();

 //note that it is using put instead of add

 //to ensure uniqueness of the key field

 newMap.put(keyField, e.getKey());

 map.add(field, newMap);

 }

 }

 }

 }

}

HierarchicalMap Pattern v2.5 Page 13 of 13

9. References

Tarr, Bob (Spring 2005) “CMSC 446: Introduction To Design Patterns”,

http://www.research.umbc.edu/~tarr/dp/spr05/cs446.html, Computer Science and

Electrical Engineering Department, University of Maryland Baltimore County.

Gamma, E., Helm, R., Johnson,R.,Vlissides, J. (1995) "Design Patterns: Elements of

Reusable Object-Oriented Software", Addison-Wesley.

10. Acknowledgement

Thanks to Douglas Atique (douglas.atique@gmail.com), the author of the first

implementation of HierarchicalMap, this was the inspiration for this pattern. Also

thanks to Marcelo Gulfier (mgulfier@hotmail.com) and Paulo Silveira

(silveira@ime.usp.br) who contributed during the discussion regarding further

enhancements.

Special thanks to Federico Balaguer (balaguer@uiuc.edu), my shepherd during

SugarLoafPlop 2005, for all the encouragement and guidance he had given me to write

this pattern.

And great thanks for Linda Rising (linda@lindarising.org / www.lindarising.org) who

gave me the kind “gift” during the SugarLoafPlop 2005. She offered me to edit my

paper!

An Open Source implementation of HierarchicalMap can be found at:

http://sourceforge.net/projects/hierarchicalmap

